General Informatics - Sample Test Questions

1) Given the sequence of bits: 1111010111111.01111 specify his equivalent in Octal: a) 13232.360 ; b) 17277.360 ; c) 03231.23 ; d) 75663.27 ; e) none of
2) Which of the following are alternative definitions for information: a) data that have been processed for a purpose; b) a series of facts obtained by observation and research and recorded; c) data that have been processed so that they are meaningful; d) a and b ; e) a and c ;
3) The logical function $f(x, y)=\bar{x} \cdot(x+\bar{y})+x \cdot \bar{y}$ is equivalent to:
a) y; b) $x \cdot y$; c) \bar{y};d) 1 ; e) none of these
4) The following code structure:

Function fx(x As String, y As String) As String Returns:

$\mathrm{fx}=\mathrm{y}$

If $x>=y$ The $f x=x$
End Function
a) the max value from x and y if x and y are numbers;
b) the min value from x and y if x and y are double;
c) the max value from x and y if x and y are of any comparable datatype;
d) the \min value from x and y if x and y are of any comparable datatype;
e) the max value from x and y if x and y are long;
5) Given the arithmetic expression $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x^{2}+2 x y+3 y}{2 x^{3}}$ and considering the rules of evaluation of expressions which of the following expression is a valid algorithmic representation:
a) $\mathrm{f}(\mathrm{x}, \mathrm{y})=\left(x^{\wedge} 2+2^{*} x^{*} y+3^{*} y\right) / 2^{*} x^{\wedge} 3$;
b) $\mathrm{f}(\mathrm{x}, \mathrm{y})=\left(x^{\wedge} 2+2^{*} x^{*} y+3^{*} y\right) /\left(2^{*} x^{\wedge} 3\right)$; c$)$ $\mathrm{f}(\mathrm{x}, \mathrm{y})=\left(\left(x^{\wedge} 2+2^{*} x^{*} y+3^{*} y\right) / 2^{*} x^{\wedge} 3\right)$; d) a and $\left.\mathrm{c} ; \mathrm{e}\right) \mathrm{b}$ and c
6) Build the truth table and the expression of the logical function modeled by the following digital circuitry. Apply the fundamentals theorems of Boolean algebra and simplify the expression.

Input			Output
\mathbf{x}	\mathbf{y}	\mathbf{z}	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

7) Find out the mathematic formula modeled by the following code sequence: Function fx(n As Integer) As Double If $\mathrm{n}=1$ Then $\mathrm{fx}=1$
Else
$\mathrm{fx}=\mathrm{n}$ * $\mathrm{fx}(\mathrm{n}-1)$
End If
End Function
